Lecture O/
Gradient Descent




Gradient descent

Consider unconstrained, smooth convex optimization
min f(x)
T

i.e., [ is convex and differentiable with dom(f) = R™. Denote the
optimal criterion value by f* = min, f(z), and a solution by x*

Gradient descent: choose initial point 2(?) € R”, repeat:
k) = k=1 _¢ . Vf(ﬂ:(k_l)),, k=1,2,3,...

Stop at some point



Think about gradient descent as repeatedly going downhill.

The negative gradient is going in the direction that decreases the optimization
criterion.

Thus, we will stop at some point close to the minimum solution independent on
the starting point. This is valid only for convex functions.

In non-convex functions, depending on the starting point different local
minima could be achieved.
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Gradient descent interpretation

® we can interpret gradient descent via a quadratic approximation.

e Suppose we are at point z, and we make a second order Taylor expansion of function f(y).

Fo) =~ F@) + V@ - (g =) + 5 0= 2 V2 5(a) (v = 2)

. . . . 2 .
® Replacing, V2 f(z) = 21 and thus assuming a proximity term to x equal to = ||y — 2|5 with
g, n \ 2t 1Y 2

weight o>, and a linear approximation to f as f(z) + Vf(z)T - (y — x), we have:

Flo) % F() + VH@)T (g =) + o ly = 3



Gradient descent interpretation

e Gradient descent will choose the next point y = ™ to minimize the quadratic approximation

by taking the gradient of f(y) equal to zero:

1
ot =argmin f(x) + VI (@) (y— ) + - |y — 2ll3

Y
z =ax —tVf(x)
e Depending on how close the next step should be to the current state = depends on weight % of

the proximity term.

» If £ is small, the weight of the proximity term is large and steps will be small.



Blue point is a, red point is

- 1
= argmin f(r) + V()7 (s —2) + o-lly — o3
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-ixed step size

Simply take t, =t forall k. =1.2.3,..., can diverge if t is too big.
Consider f(x) = (10x% + 23)/2, gradient descent after 8 steps:
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Can be slow if t is too small. Same example, gradient descent after
100 steps:
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e As updates get closer to the minimum, the effective step tV f(x) gets small as the gradient

V f(x) approaches zero and thus step direction will shrink by default and slowed down

the process.



Converges nicely when t is “just right”. Same example, gradient
descent after 40 steps:
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Convergence analysis later will give us a precise idea of “just right”



Exact line search

Could choose step to do the best we can along direction of
negative gradient, called exact line search:

t = argmin f(xr —sVf(x))

s>0

Usually not possible to do this minimization exactly

Approximations to exact line search are often not as efficient as
backtracking, and it's usually not worth it
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Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

e First fix parameters 0 < f <l and 0 < a < 1/2

e At each iteration, start with ¢ = ¢;,,;t, and while

flx—tVf(x)) > flx) — at||Vf(2)]3

shrink t = 3t. Else perform gradient descent update

v =2 —tVf(z)

Simple and tends to work well in practice (further simplification:
just take a = 1/2)
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Backtracking interpretation

fl@) + Vi)' (y —2)

—

flz) +tVf(z)" Az

f(x)+atVf(r)T Ax

flz +tAx)

t

to

For Ax = -V f(x)

fly) > f(z)+ Vi) (y—2)

fGet) = fx —tVf(x)
> F(xX)+VF(x) "(x —tVf(x) — x)
= f(x) = tIIVf ()5

® Lets assume current state is point z, and a

step direction Az = —V f(x).

e We would like to find =T such that

f(z) 2 flab).

® By convexity, the tangent line

f(z) + tVf(z)T Az

is always lower than f(x).

® Thus, before making a comparison we adjust

this value by fraction «, and then compare
progress with f(x) + atV f(z)T Az.
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Backtracking interpretation
® [f the value of the function in the proposed step f(xz —tV f(z)) is to big, we adjust by a

factor B and repeat until we find a value of f(z™) that is lower or equal than our benchmark.

e If the criterion is meet, we update our next value to = = z — tV f(x).

flz + tAz)

For Ax = -V f(x)
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Backtracking picks up roughly the right step size (12 outer steps,
40 steps total):
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Here o« = 3 = 0.5
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Convergence analysis

Assume that f convex and differentiable, with dom(f) = R", and
additionally

|Vf(z) =V f(y)lle < L||lzr—yl2 forany z,y

l.e., V£ is Lipschitz continuous with constant L > 0

Theorem: Gradient descent with fixed step size t < 1/L satisfies

|2 — 2*|I3
2tk

fla®) - f* <

We say gradient descent has convergence rate O(1/k)
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Convergence analysis

e The gradient descent with fized step size t < 1/L satisfies

|2 — 2*||3

(k)y _ £*
fa®) - <

e LFrom this we can see that

Q-3 [e® — a3

‘ 2tk St

Hence, O(1/¢) iterations are required for f(z(*)) — f* <e.
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Proof: By assumption V f is Lipschitz with constant L which implies

F) < F@) + V@) -2+ Sl -2l Vey (L)

so we can upper bound the function by a quadratic .

e Suppose we are at a x in gradient descent iterations, go to T = z — tV f(x).

Evaluating the inequality in 1.1 at y = =7 we find that

F¥) < F@) + Vi@ (@ —a) + Sl —
— (&) + V@) (& — 1V (@) — 2) + 5|z~ 7 f
= ()~ (Y F@) T (V@) + 207 ()]
— ()~ |V H2+£2HV}“ I
because ¢ < 1/L and hence, ~ = f(x )—f(l—E)HV’f )13

Lt/2 <1/2.

< f(x __va IE



Thus, we have shown that

fa™) < fla ——WU )12 (1.2)

or that f(z7) < f(x) showing descent.

Since f is convex the first order characterization holds and hence

fly) > f(a) + V() (y —x) Va,yedom(f)

Rearranging and setting y = x* yvields
f(z) < f(x*) + Vf(2)" (x —z) (1.3)

Combining this with 1.2 we have

fla®) < fa —~MVf )3
< f(@*) + V() (z—a*) - %HW(I)H%
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i f(x*) —+ Vf(;l‘-)T(;l‘- — ") — _Hv.f ||2

z—2"|[3 = |lz — 2"[[3 = ||V f(2)[]2 + 2tV f(2) (I—I*))

r—aF % — (x — x*)T(a‘. —a*) = t*V f(a )TVf( ) + QIL-Vf(Lr)T(«I? — I*))

(
(
= f@") + o (e = 23 = [z = )T (2 = *) + £V () V£ () = 26V () (2 = "))
(Il2 = 2*13 = (2 = #V f(2)T = a*)T (2 = 1V f(2)T = "))

(

v —a*|3 — [lr =tV f(2)T —a*|3)

1
= f*) + o (Il = 2B = [l = 2*[3)

because 27 = x — tV f(x).
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Applving this result to a step z we find that

1 * 1 71— * 1 *
Fat) = fa*) < o ([l = 2*[3 = [l — 2| 3)
Thus.
K k1 | |
> faD) = fa*) £ 30 (120D 2|3 — 12O — 2| 3)
i=1 i=1

0 2 k 2
Qt( 70 _ g Q—H;r.( )—;F*HQ)

< ! ( 2(0) — 2)
~ 2t ?

The last step follows because this is a telescoping sum where the second term for

each 7 — 1 cancels with the first term for each .

20



recall: f(x™) < f(z) shows descent.

.k k

l * & E S
o dl > 120 6®) = fla) = £®) - 1o
Combining these yvields our desired result

k
> 5D = £ 2 k(f®) - fa))

From previous shide:

(0) ,_*||2
— 2R _ %) < Ik L1112
[.f(r ) — f&7) < Y .




Stochastic gradient descent

Consider minimizing a sum of functions

mﬂjn Z fi(x)
i=1
As VY " fi(x) =>_", Vfi(x), gradient descent would repeat:

R = p=1) _ ¢ Z\—/ﬁ =y e =1,2,3, ...

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats:

) == ¢ v (YY), E=1,2.3,..

where i, € {1,...m} is some chosen index at iteration k
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Two rules for choosing index ;. at iteration k:

e Cyclic rule: choose i), =1.2,...m,1,2,...m, ...

e Randomized rule: choose ij, € {1,...m} uniformly at random

Randomized rule is more common in practice

What's the difference between stochastic and usual (called batch)
methods? Computationally, m stochastic steps ~ one batch step.
But what about progress?

e Cyclic rule, m steps: xtktm) = p(k) _¢ S V f; (z(k+i=1))

k1) = 2k) — ¢ Vf (k)
ekt 2) = gkt 1) ¢ V£ (2k+1) =

k) —t Vf,(2F)) =t V f(xk+1)

m stochastic steps

pktm) _ p(ktm=1) _p 7 (g (Rtm=1)) _

o®) — SV fiaHD)
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e Batch method, one step: ") = (k) — 57 ¥ f;(2(F))
o Difference in direction is > ", [Vfg(;f (kti=1)) _ st(if(;" ).

So SGD should converge if each Vf;(x) doesn't vary wildly with «

Rule of thumb: SGD thrives far from optimum, struggles close to
optimum ...
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Appendix

Some notes from multi-variate calculus
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L1pschitz continuity

A Lipschitz continuous function is limited in how fast it can change:
» there exists a definite real number such that,
= for every pair of points on the graph of this function,

v the absolute value of the slope of the line connecting them is not greater than this
real number.

= this bound is called a Lipschitz constant of the function.

» For instance, every function that has bounded first derivatives iIs Lipschitz.

In particular, a real-valued function f: R — R is called Lipschitz continuous if there exists a positive real constant K ¢

such that, for all real x4 and xo,

[f(z1) — f(z2)| < Klz1 — 23]
the sine function is Lipschitz continuous because its derivative, the cosine function, is bounded above

by 1 in absolute value.



Lipschitz continuous gradient

the gradient of f is Lipschitz continuous with parameter L > 0 if

IVf(x) =V (y)|s < L||z—1yl|s foralz,yedomf

e note that the definition does not assume convexity of f

e we will see that for convex f with dom f = R", this is equivalent to

L
§:I?T:I? — f(x) s convex

(i.e.,if f is twice differentiable, V= f(x) < LI for all z)
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Cauchy—Schwarz inequality

® The Cauchy-Schwarz inequality states that for all vectors u and v

|{u,v}|2 < (uw,u) - (v,v),

where (-, -) is the inner product.

® [Equivalently, by taking the square root of both sides, and referring to the norms

of the vectors, the inequality i1s written as

[, v)| < [[a]f{|v].
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Monotonicity of gradient

a differentiable function f is convex if and only if dom f is convex and
(Vf(x)— Vf(-y))T (r —y) >0 forallx,y € dom f
i.e.,the gradient Vf : R" — R" is a monotone mapping

Proof

e if f is differentiable and convex, then

fly) > fla)+ Vi) (y—2), fl@)>fly)+VIiy (z—y)

combining the inequalities gives (V f(x) — Vf(y))" (z —y) > 0
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Quadratic upper bound

suppose V f is Lipschitz continuous with parameter L and dom f is convex

e then g(x) = (L/2)xlx — f(x), with dom g = dom £, Is convex

e convexity of ¢ is equivalent to a quadratic upper bound on f:

. L
fly) < f@)+ Vi) (y —x) + E”U —x||5 forallz.y € dom f
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Proof of Quadratic Upper Bound

e fisconvex — (Vf(:z:) — Vf('y))T (x — -y) > ()

e the Cauchy-Schwarz inequality imply
(Vi@)=Viw)' (x—y) < 1(VF@)=VIu)' oz =yl

e Lipschitz continuity of Vf — ||V f(z) = V(y)|l> < Ll|z — vl

31



Proof of Quadratic Upper Bound

To prove a quadratic upper bound for f(x), we first prove
g(x) is convex.

g(x) = (L/Q):I:T:I: — f(x),
Vg(x) = Lx — Vf(x)
(Vg(x) = V()" (z —y) =
[L (z — -,U)T— (Vf(x)— Vf(y))T] (x—y) =

Lz —yl2 — (Vf(x)=Vfiy)T (z—y) =0

Hence, g(x) is convex!
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Proof of Quadratic Upper Bound

e the quadratic upper bound is the first-order condition for convexity of ¢

g(y) = glx) + V.U(fff)T(;U —x) forallz,y € domg

Replace the following values in the above expression:
g(x) = (L/2)x"x — f(x),

9(y) =(L/2)y"y — f(v)

Vg(x) = Lz — Vf(x)

Vg ('.U) = Ly - Vf ('.f})

You'll obtain the quadratic upper bound for f:

L

fly) < f(z)+ Vf(a ) (y —x) + EHU — IH% forall .y € dom f
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